Uniform Approximation with Positive Linear Operators Generated by Binomial Expansions

B. WOOD

Mathematics Department, University of Arizona, Tucson, Arizona 85721, U.S.A.

Communicated by Oved Shisha

Received March 31, 1986

Uniform approximation of functions of a real or a complex variable by a class of linear operators generated by certain power series is studied. © 1989 Academic Press, Inc.

1. INTRODUCTION

Let $\phi(y)$, ϕ^{-1} be analytic for $|y| < r \le \infty$, with

$$\phi(y) = \sum_{k=0}^{\infty} a_k y^k$$

and $a_0 > 0$, $a_1 > 0$; $a_k \ge 0$, k = 2, 3, ... There exist [3] $b \in (0, \infty]$, a domain D containing the origin, and a unique function f such that f(0) = 0, f is analytic on D, f(x) > 0 for 0 < x < b, and

$$\frac{f(z)\phi'(f(z))}{\phi(f(z))} = z, \qquad z \in D.$$
(1.1)

For n = 1, 2, ... and |y| < r, let

$$\phi_n(y) = [\phi(y)]^n = \sum_{k=0}^{\infty} a_{nk} y^k.$$
 (1.2)

. . .

Define the linear operator

$$L_n(h;z) = [\phi_n(f(z))]^{-1} \sum_{k=0}^{\infty} a_{nk}(f(z))^k h\left(\frac{k}{n}\right)$$
(1.3)

for those h, z for which the right-hand side of (1.3) exists. For example, if h is bounded on the positive axis and |z| is sufficiently small, then (1.3) exists

0021-9045/89 \$3.00 Copyright © 1989 by Academic Press, Inc. All rights of reproduction in any form reserved. and is also a positive operator on some interval [0, a]. This method specializes one introduced by Pethe [3], who obtained uniform approximation of bounded functions. The author [5] studied the order of approximation of bounded functions with linear combinations of the special case of (1.3) defined below.

Assume $\phi(0) = 1$ and $\phi'(y) = [\phi(y)]^{1+\alpha}$ with $\alpha = -1/m$, m = 1, 2, ..., or $a \ge 0$. If $\alpha = -1/m$ then $\phi(y) = (1 + y/m)^m$, $f(z) = z(1 - z/m)^{-1}$, and (1.3) is the generalized Bernstein polynomial

$$L_n(h;z) = \sum_{k=0}^{mn} \binom{mn}{k} \left(\frac{z}{m}\right)^k \left(1 - \frac{z}{m}\right)^{mn-k} h\left(\frac{k}{n}\right).$$
(1.4)

If $\alpha = 0$ then $\phi(y) = e^{y}$, f(z) = z, and (1.3) is just the Szász operator. If $\alpha > 0$ then $\phi(y) = (1 - \alpha y)^{-\alpha^{-1}}$, $f(z) = z(1 + \alpha z)^{-1}$, and (1.3) is a generalized Baskakov method. For $\alpha = 1/m$, m = 1, 2, ..., we have

$$L_n(h;z) = \left(1 + \frac{z}{m}\right)^{-mn} \sum_{k=0}^{\infty} \binom{mn+k-1}{k} \left(\frac{z}{m+z}\right)^k h\left(\frac{k}{n}\right).$$
(1.5)

The Baskakov operator is obtained when $\alpha = 1$.

Becker [1] has discussed weighted global approximation for the Szász and Baskakov operators. In Section 2 we derive his direct result for (1.3) in the case $\alpha > 0$ and also approximate functions having exponential growth on $[0, \infty]$. Section 3 contains results on the approximation of analytic functions.

2. Approximation on the Real Line

In this section L_n denotes (1.3) with $\phi(y) = (1 - \alpha y)^{-\alpha^{-1}}$ and $\alpha > 0$.

LEMMA 2.1. For $x \ge 0$ and n = 1, 2, ...,

$$L_n(1;x) = 1; (2.1)$$

$$L_n(t;x) = x; (2.2)$$

$$L_n((t-x)^2; x) = \frac{\alpha x^2 + x}{n}.$$
 (2.3)

Proof. The results follow easily from (1.1), (1.2), (1.3), and $\phi'(y) = [\phi(y)]^{1+\alpha}$.

LEMMA 2.2. For $x \ge 0$, n = 1, 2, ..., and r = 2, 3, ...,

$$L_n(t^r; x) = \sum_{l=1}^r \sigma_r^l \frac{n(n+\alpha)\cdots(n+(l-1)\alpha)}{n^r} x^l,$$
 (2.4)

where σ_r^l are Stirling numbers of the second kind [2].

Proof. Let $y = f(x) = x(1 + \alpha x)^{-1}$, $x \ge 0$, in (1.1). Using (1.2),

$$\frac{y\phi_n'(y)}{\phi_n(y)} = n \frac{y\phi'(y)}{\phi(y)} = nx.$$

Assume

$$\frac{y'\phi_n^{(l)}(y)}{\phi_n(y)} = n(n+\alpha)\cdots(n+(l-1)\alpha) x^l.$$

Using $\phi'(y) = [\phi(y)]^{1+\alpha}$ we obtain

$$\frac{y^{l+1}\phi_n^{(l+1)}(y)}{\phi_n(y)} = n(n+\alpha)\cdots(n+(l-1)\alpha)(n+l\alpha)x^{l+1}$$

and hence, for $l = 1, 2, ..., x \ge 0, y = f(x)$,

$$\frac{y^l \phi_n^{(l)}(y)}{\phi_n(y)} = n(n+\alpha) \cdots (n+(l-1)\alpha) x^l$$

If $x \ge 0$ then $0 \le y < 1/\alpha$ and

$$L_{n}(t^{r}; x) = [\phi_{n}(y)]^{-1} \sum_{k=0}^{\infty} a_{nk} y^{k} \left(\frac{k}{n}\right)^{r}$$

= $[\phi_{n}(y)]^{-1} \sum_{k=0}^{\infty} a_{nk} y^{k} \sum_{l=1}^{r} \sigma_{r}^{l} \frac{k(k-1)\cdots(k-l+1)}{n^{r}}$
= $\sum_{l=1}^{r} \sigma_{r}^{l} \frac{y^{l} \phi_{n}^{(l)}(y)}{n^{r} \phi_{n}(y)}$
= $\sum_{l=1}^{r} \sigma_{r}^{l} \frac{n(n+\alpha)\cdots(n+(l-1)\alpha)}{n^{r}} x^{l}.$

Lemma 2.2 shows that the numbers $a_{r,j}$ in Lemma 3 of [1] are Stirling numbers, since (2.4) is also valid for the Szász operator ($\alpha = 0$ and f(x) = x).

Define weights $w_0(x) = 1$, $w_N(x) = (1 + x^N)^{-1}$, $x \ge 0$, N = 1, 2, ..., and

space $C_N = \{h: h \in C[0, \infty) \text{ and } w_N h \text{ is uniformly continuous and bounded on } [0, \infty)\}$. For $h \in C_N$ define [1]

$$\|h\|_{N} = \sup_{x \ge 0} w_{N}(x) |h(x)|,$$
$$\Delta_{\lambda}^{2} h(x) = h(x + 2\lambda) - 2h(x + \lambda) + h(x), \qquad \lambda > 0,$$

and

$$\omega_N^2(h,\,\delta) = \sup_{0\,<\,\lambda\,\leqslant\,\delta} \, \|\varDelta_\lambda^2 h\|_N.$$

In the sequel the finite constants $M_{N,\alpha}$ may have different values at each occurrence. The next result is an easy consequence of (2.4).

LEMMA 2.3. For $N = 0, 1, ..., x \ge 0$ n = 1, 2, ..., $w_N(x) L_n(1 + t^N; x) \le M_{N, x}.$ (2.5)

LEMMA 2.4. For $N = 0, 1, ..., h \in C_N$, and n = 1, 2, ...,

$$\|L_n(h)\|_N \leqslant M_{N,\,\alpha} \,\|h\|_N.$$
(2.6)

Proof. If $x \ge 0$,

$$W_N(x) |L_n(h; x)| \leq W_N(x) ||h||_N L_n(1 + t^N; x)$$

and (2.6) follows from (2.5).

LEMMA 2.5. For $N = 0, 1, ..., x \ge 0$, and n = 1, 2, ...,

$$w_N(x) L_n((t-x)^2(1+t^N); x) \leq M_{N, \alpha}\left(\frac{\alpha x^2 + x}{n}\right).$$
 (2.7)

Proof. The result is trivial for N = 0. For $N \ge 1$ and $x \ge 0$, using (2.4)

$$0 \leq L_n((t-x)^2 t^N; x) = L_n(t^{N+2}; x) - 2xL_n(t^{N+1}; x) + x^2L_n(t^N; x)$$

= $\frac{n \cdots (n + (N+1)\alpha)}{n^{N+2}} x^{N+2} + \sigma_{N+2}^{N+1} \frac{n \cdots (n+N\alpha)}{n^{N+2}} x^{N+1} \cdots$
+ $\frac{x}{n^{N+1}} - 2\left[\frac{n \cdots (n + (N)\alpha)}{n^{N+1}} x^{N+2} + \sigma_{N+1}^N \frac{n \cdots (n + (N-1)\alpha)}{n^{N+1}} x^{N+1} + \cdots + \frac{x^2}{n^N}\right]$

$$+\frac{n\cdots(n+(N-1)\alpha)}{n^{N}}x^{N+2} + \sigma_{N}^{N-1}\frac{n\cdots(n+(N-2)\alpha)}{n^{N}}x^{N+1} + \cdots + \frac{x^{3}}{n^{N-1}} = \left(1+\frac{\alpha}{n}\right)\left(1+\frac{2\alpha}{n}\right)\cdots\left(1+\frac{(N-1)\alpha}{n}\right)\left[\left(1+\frac{N\alpha}{n}\right)\left(1+\frac{(N+1)\alpha}{n}\right) - 2\left(1+\frac{N\alpha}{n}\right)+1\right]x^{N+2} + \cdots + \frac{x}{n^{N+1}} = \frac{\alpha x^{2}}{n}A_{N,n,\alpha}(x) + \frac{x}{n^{N+1}}$$

where $A_{N,n,\alpha}(x)$ is a polynomial in x of degree N with coefficients that are bounded in n. Estimate (2.7) follows from (2.3) and the above.

We can now state the direct result. The proof is exactly the same as [1, Theorem 8], using (2.1), (2.2), (2.3), (2.6), and (2.7).

THEOREM 2.6. For $N = 0, 1, ..., h \in C_N, x \ge 0$, and $n = 1, 2, ..., n \ge 0$

$$w_N(x)|L_n(h;x) - h(x)| \leq M_{N,\alpha} \,\omega_N^2 \left(h, \left(\frac{\theta(x)}{n}\right)^{1/2}\right),\tag{2.8}$$

where $\theta(x) = \alpha x^2 + x$.

Since Becker [1] has shown (2.8) for the Szász operator ($\alpha = 0$), the Szász operator provides the best weighted global approximation for the class of methods generated by the analytic function ϕ with $\phi(0) = 1$ and $\phi'(y) = [\phi(y)]^{1+\alpha}$, $\alpha \ge 0$. Also, (2.8) implies uniform convergence on [0, a] for functions, h, having polynomial growth on $[0, \infty)$. Our next theorem yields uniform convergence for functions with exponential growth on the positive axis.

THEOREM 2.7. If h is continuous on [0, a], continuous from the right at a, and, for some finite number A, $|h(x)| \leq e^{Ax}$, $x \geq 0$, then

$$\lim_{n \to \infty} L_n(h; x) = h(x) \tag{2.9}$$

uniformly on [0, a].

Proof. Choose $S > A/\ln(1/\alpha a + 1)$ and let $n \ge S$, $0 \le x \le a$. Then

$$0 \leqslant \frac{e^{A/n}x}{1+\alpha x} < \frac{1}{\alpha}$$

and

$$L_n(e^{At}; x) = \left[\frac{\phi(e^{A/n} x/1 + \alpha x)}{\phi(x/1 + \alpha x)}\right]^n = [1 - (e^{A/n} - 1) \alpha x]^{-n/\alpha}$$

Using L'Hopital's rule,

$$\lim_{n \to \infty} L_n(e^{At}; x) = e^{Ax}$$
(2.10)

uniformly on [0, a].

Let $0 \le x \le a$, $\varepsilon > 0$, and choose $\delta > 0$ such that $|h(t) - h(x)| < \varepsilon$ if $|t - x| < \delta$, $0 \le x \le a$, and $0 \le t < a + \delta$. Let

$$c_{nk}(x) = \frac{a_{nk}(f(x))^k}{\phi_n(f(x))},$$

where $f(x) = x(1 + \alpha x)^{-1}$ and $n > 2A/\ln(1/\alpha a + 1)$. Then

$$|L_n(h;x) - h(x)| \leq \sum_{|k/n - x| < \delta} c_{nk}(x) \left| h\left(\frac{k}{n}\right) - h(x) \right|$$

+
$$\sum_{|k/n - x| \ge \delta} c_{nk}(x) \left| h\left(\frac{k}{n}\right) - h(x) \right|$$

< $\varepsilon + \frac{e^{Ax}}{\delta^2} \sum_{k=0}^{\infty} \left(\frac{k}{n} - x\right)^2 c_{nk}(x) + \frac{1}{\delta} \sum_{k=0}^{\infty} \left|\frac{k}{n} - x\right| c_{nk}(x) e^{Ak/n}$
$$\leq \varepsilon + \frac{e^{Ax}}{\delta^2} L_n((t-x)^2; x) + \frac{1}{\delta} [L_n((t-x)^2; x) L_n(e^{2At}; x)]^{1/2}$$

and (2.9) follows from (2.3) and (2.10).

If $h \in C[0, \infty)$ and, for some finite A,

$$\overline{\lim_{x\to\infty}}\,\frac{|h(x)|}{e^{Ax}}<\infty,$$

the proof can easily be modified to yield (2.9). We cannot allow h to grow any faster. For example, let $h(x) = e^{x^{1+\varepsilon}}$, $\varepsilon > 0$. For $n \ge 1$ and x > 0,

$$L_n(h;x) \ge (1+\alpha x)^{-n/\alpha} \sum_{k=1}^{\infty} \frac{n(n+\alpha)\cdots(n+(k-1)\alpha)}{k!} \left(\frac{x}{1+\alpha x}\right)^k (e^{k/n})^{1+\varepsilon}$$
$$\ge (1+\alpha x)^{-n/\alpha} \sum_{k=1}^{\infty} \left(\frac{nx}{1+\alpha x}\right) \frac{k(e^{k/n})^{1+\varepsilon}}{k!}$$

and the last series is divergent. Theorem 2.7 is well known for the Szász operator (see [4]).

B. WOOD

3. Approximation in the Complex Plane

Our final results deal with the approximation of analytic functions. In the first theorem, L_n is the generalized Baskakov method of Section 2, while L_n denotes the generalized Bernstein polynomial (1.4) in Lemma 3.2 and Theorem 3.3.

THEOREM 3.1. If $\alpha > 0$, h is entire, and for some finite number A, $|h(x)| \leq e^{Ax}$, $x \geq 0$, then

$$\lim_{n \to \infty} L_n(h; z) = h(z) \tag{3.1}$$

uniformly on compact subsets of Re $z > -1/2\alpha$.

Proof. Let

$$h(z) = \sum_{v=0}^{\infty} \alpha_v z^v, \qquad |z| < \infty.$$

Without loss of generality, we may assume $\alpha_v \ge 0$, v = 0, 1, ..., since we can write $h = h_1 - h_2 + i(h_3 - h_4)$ where the h_i 's have nonnegative Taylor coefficients. Let S be a compact subset of Re $z > -1/2\alpha$. Since $f(z) = z(1 + \alpha z)^{-1}$ is analytic on Re $z > -1/2\alpha$ and maps that set into $|y| < 1/\alpha$, f(S) is a compact subset of $|y| < 1/\alpha$. Thus there exists λ such that $z \in S$ implies $|z/(1 + \alpha z)| \le 1/\lambda < 1/\alpha$. Hence $L_n(t^v; z)$ is analytic on Re $z > -1/2\alpha$ for v = 0, 1, 2, ... Let

$$\Omega_n = \left\{ z: \left| \frac{z e^{A/n}}{1 + \alpha z} \right| < \frac{1}{\alpha} \right\} = \left\{ z: z = x + iy \text{ and } (x - c_n)^2 + y^2 < r_n^2 \right\}$$

where

$$c_n = \frac{1}{\alpha(e^{2A/n} - 1)}, \qquad r_n = \frac{e^{A/n}}{\alpha(e^{2A/n} - 1)}$$

Since $|h(x)| \leq e^{Ax}$ for $x \geq 0$, an argument similar to the above shows $L_n(h; z)$ is analytic on Ω_n for each n = 1, 2, ... Next $\Omega_n \subset \Omega_{n+1} \subset \cdots \subset$ Re $z > -1/2\alpha$. Choose N such that $\alpha/\lambda < 1/e^{A/N} < 1$ and it follows that $S \subset \Omega_n$ for $n \geq N$. Theorem 2.7 gives

$$\lim_{n \to \infty} L_n(h, x) = h(x), \qquad 0 \le x \le c_N + r_N.$$

Since $L_n(t^v; z)$ is analytic for Re $z > -1/2\alpha$, using (2.4) we see that (2.4) holds for Re $z > -1/2\alpha$. If $z \in \Omega_N$ then

$$\sum_{v=0}^{\infty} \alpha_v |L_n(t^v; z)| \leq \sum_{v=0}^{\infty} \alpha_v L_n(t^v; |z|) \leq L_n(h; c_N + r_N) < \infty.$$

Hence

$$\sum_{v=0}^{\infty} \alpha_v L_n(t^v; z)$$

is analytic for $z \in \Omega_N$, n = 1, 2, ... Since

$$L_n(h; x) = \sum_{v=0}^{\infty} \alpha_v L_n(t^v; x)$$

for $0 \leq x \leq c_N + r_N$, we have

$$L_n(h; z) = \sum_{v=0}^{\infty} \alpha_v L_n(t^v; z)$$

for $z \in \Omega_N$ and $n \ge N$. Finally, $\{L_n(h;)\}$, $n \ge N$, is a uniformly bounded sequence on compact subsets of Ω_N . By Vitali's convergence theorem

$$\lim_{n \to \infty} L_n(h; z) = h(z)$$

uniformly on compact subsets of Ω_N and (3.1) follows.

Analogous to the remark following Theorem 2.7, the proof of Theorem 3.1 can be modified to obtain conclusion (3.1) if h is entire and there exists a finite number A such that

$$\lim_{x \to \infty} \frac{|h(x)|}{e^{Ax}} < \infty.$$

In particular, Theorem 3.1 is valid for entire functions of exponential type. For the Szász operator, uniform convergence is obtained on compact subsets of the finite plane [4].

In the sequel let $\phi(y) = (1 + y/m)^m$, $f(z) = z(1 - z/m)^{-1}$, m = 1, 2, ..., and

$$c_{nk}(z) = \frac{a_{nk}(f(z))^k}{\left[\phi(f(z))\right]^n}.$$

LEMMA 3.2. For 0 < x < m, k = 0, 1, ..., and n = 1, 2, ...,

$$\frac{1}{n}\left(x-\frac{x^2}{m}\right)c'_{nk}(x) = \left(\frac{k}{n}-x\right)c_{nk}(x).$$
(3.2)

Proof. Let 0 < x < m. Using $\phi'(y) = [\phi(y)]^{1-1/m}$,

$$c'_{nk}(x) = a_{nk} \left\{ \frac{k(f(x))^{k-1} f'(x)}{[\phi(f(x))]^n} - \frac{(f(x))^k f'(x) n}{[\phi(f(x))]^{n+1/m}} \right\}$$
$$= nf'(x) [\phi(f(x))]^{-1/m} \left\{ \frac{ka_{nk}(f(x))^{k-1}}{n[\phi(f(x))]^{n-1/m}} - \frac{a_{nk}(f(x))^k}{[\phi(f(x))]^n} \right\}.$$

But

$$x = \frac{f(x)\phi'(f(x))}{\phi(f(x))} = f(x)[\phi(f(x))]^{-1/m}$$

and hence

$$1 = \frac{f'(x)[\phi(f(x))]^{-1/m}f(x)}{f(x)} - \frac{f'(x)\{f(x)[\phi(f(x))]^{-1/m}\}^2}{mf(x)}$$
$$= \frac{f'(x)}{f(x)}\left(x - \frac{x^2}{m}\right).$$

Therefore

$$\frac{1}{n} \left(x - \frac{x^2}{m} \right) c'_{nk}(x) = \frac{k a_{nk}(f(x))^k f'(x)}{n [\phi(f(x))]^n f(x)} \left(x - \frac{x^2}{m} \right)$$
$$- \frac{a_{nk}(f(x))^k f'(x)}{[\phi(f(x))]^n} \left(x - \frac{x^2}{m} \right) [\phi(f(x))]^{-1/m}$$
$$= \frac{a_{nk}(f(x))^k}{[\phi(f(x))]^n} \left(\frac{k}{n} - x \right)$$
$$= c_{nk}(x) \left(\frac{k}{n} - x \right).$$

THEOREM 3.3. If m is a positive integer,

$$h(z) = \sum_{v=0}^{\infty} \alpha_v z^v, \qquad |z| \leq m,$$

with

$$\sum_{v=0}^{\infty} |\alpha_v| m^v < \infty,$$

and $L_n(h; z)$ is the generalized Bernstein polynomial (1.4), then

$$\lim_{n \to \infty} L_n(h; z) = h(z) \tag{3.3}$$

uniformly on $|z| \leq m$.

Proof. As in the proof of Theorem 3.1 we may assume $\alpha_v \ge 0$, $v = 0, 1, \dots$ From [3] we have

$$\lim_{n \to \infty} L_n(h; x) = h(x), \qquad 0 \le x \le m.$$

The proof of Lemma 2.2 with $\alpha = -1/m$, $\phi(y) = (1 + y/m)^m$, and $y = f(x) = x(1 - x/m)^{-1}$ shows that (2.4) holds for $0 \le x < m$. Therefore

$$L_n(t^{\nu}; z) = \sum_{l=1}^{\nu} \sigma_{\nu}^l \frac{n(n-1/m)\cdots(n-(l-1)/m)}{n^{\nu}} z^l$$
(3.4)

for all complex z. When r > mn the coefficients of z^l vanish for l > mn. From (3.4) and

$$L_n(h; x) = \sum_{v=0}^{\infty} \alpha_v L_n(t^v; x), \qquad 0 \le x \le m,$$

we see that

$$\sum_{v=0}^{\infty} \alpha_v L_n(t^v; z)$$

converges uniformly on $|z| \leq m$. Hence

$$L_n(h;z) = \sum_{v=0}^{\infty} \alpha_v L_n(t^v;z), \qquad |z| < m.$$

Just as in the proof of Theorem 3.1,

$$\lim_{n\to\infty} L_n(h;z) = h(z)$$

uniformly on compact subsets of |z| < m. In particular, we have uniform convergence on each disk $|z| \le p < m$. Using (3.4),

$$|L'_n(h;z)| \leq L'_n(h;p) \leq L'_n(h;m)$$

for $|z| \leq p < m$. By continuity

$$|L'_n(h;z)| \leq L'_n(h;p)$$

B. WOOD

for $|z| \leq p \leq m$. Next, for any $|z| \leq m$, $p \leq |z| \leq m$, $z = te^{i\eta}$, we have

$$|L_n(h; z) - L_n(h; pe^{i\eta})| \leq \int_p^t |L'_n(h; xe^{i\eta})| dx$$

$$\leq L_n(h; t) - L_n(h; p) \leq (t-p) L'_n(h; m).$$

Therefore the functions $L_n(h; z)$ will be equicontinuous in $|z| \le m$ if the sequence $\{L'_n(h; m)\}$ is bounded. From (2.1), (2.2), which are true for (1.4), and (3.2)

$$0 \leq L'_{n}(h; x) = \left(\frac{n}{x - x^{2}/m}\right) L_{n}((t - x) h(t); x)$$

= $\left(\frac{n}{x - x^{2}/m}\right) L_{n}((t - x)(h(x) + h'(\zeta)(t - x)); x)$
= $\left(\frac{n}{x - x^{2}/m}\right) L_{n}(h'(\zeta)(t - x)^{2}; x)$
 $\leq \left(\frac{n}{x - x^{2}/m}\right) L_{n}((t - x)^{2}; x) h'(m) = h'(m)$

for 0 < x < m. By continuity,

$$0 \leq L'_n(h;m) \leq h'(m).$$

Finally, since the $L_n(h; z)$ converge uniformly to h(z) on each disk $|z| \le p < m$, and are equicontinuous on $|z| \le m$, they converge uniformly on $|z| \le m$ and (3.3) is proved.

References

- 1. M. BECKER, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, *Indiana Univ. Math. J.* 27, No. 1 (1978), 127-142.
- 2. C. JORDAN, "Calculus of Finite Differences," Chelsea Press, NY, 1947.
- 3. S. PETHE, On linear positive operators, J. London Math. Soc. (2) 27, No. 2 (1983), 55-62.
- B. WOOD, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math. 17, No. 4 (1969), 790–801.
- 5. B. Wood, Order of approximation by linear combinations of positive linear operators, J. Approx. Theory 45 (1985), 375-382.