# Uniform Approximation with Positive Linear Operators Generated by Binomial Expansions 

B. Wood<br>Mathematics Department, University of Arizona, Tucson, Arizona 85721, U.S.A.<br>Communicated by Oved Shisha

Received March 31, 1986

Uniform approximation of functions of a real or a complex variable by a class of linear operators generated by certain power series is studied. © 1989 Academic Press, Inc.

## 1. Introduction

Let $\phi(y), \phi^{-1}$ be analytic for $|y|<r \leqslant \infty$, with

$$
\phi(y)=\sum_{k=0}^{\infty} a_{k} y^{k}
$$

and $a_{0}>0, a_{1}>0 ; a_{k} \geqslant 0, k=2,3, \ldots$. There exist [3] $b \in(0, \infty]$, a domain $D$ containing the origin, and a unique function $f$ such that $f(0)=0, f$ is analytic on $D, f(x)>0$ for $0<x<b$, and

$$
\begin{equation*}
\frac{f(z) \phi^{\prime}(f(z))}{\phi(f(z))}=z, \quad z \in D \tag{1.1}
\end{equation*}
$$

For $n=1,2, \ldots$ and $|y|<r$, let

$$
\begin{equation*}
\phi_{n}(y)=[\phi(y)]^{n}=\sum_{k=0}^{\infty} a_{n k} y^{k} \tag{1.2}
\end{equation*}
$$

Define the linear operator

$$
\begin{equation*}
L_{n}(h ; z)=\left[\phi_{n}(f(z))\right]^{-1} \sum_{k=0}^{\infty} a_{n k}(f(z))^{k} h\left(\frac{k}{n}\right) \tag{1.3}
\end{equation*}
$$

for those $h, z$ for which the right-hand side of (1.3) exists. For example, if $h$ is bounded on the positive axis and $|z|$ is sufficiently small, then (1.3) exists
and is also a positive operator on some interval $[0, a]$. This method specializes one introduced by Pethe [3], who obtained uniform approximation of bounded functions. The author [5] studied the order of approximation of bounded functions with linear combinations of the special case of ( 1.3 ) defined below.

Assume $\phi(0)=1$ and $\phi^{\prime}(y)=[\phi(y)]^{1+\alpha}$ with $\alpha=-1 / m, m=1,2, \ldots$, or $a \geqslant 0$. If $\alpha=-1 / m$ then $\phi(y)=(1+y / m)^{m}, f(z)=z(1-z / m)^{-1}$, and (1.3) is the generalized Bernstein polynomial

$$
\begin{equation*}
L_{n}(h ; z)=\sum_{k=0}^{m n}\binom{m n}{k}\left(\frac{z}{m}\right)^{k}\left(1-\frac{z}{m}\right)^{m n-k} h\left(\frac{k}{n}\right) . \tag{1.4}
\end{equation*}
$$

If $\alpha=0$ then $\phi(y)=e^{y}, f(z)=z$, and (1.3) is just the Szász operator. If $\alpha>0$ then $\phi(y)=(1-\alpha y)^{-x^{-1}}, f(z)=z(1+\alpha z)^{-1}$, and (1.3) is a generalized Baskakov method. For $\alpha=1 / m, m=1,2, \ldots$, we have

$$
\begin{equation*}
L_{n}(h ; z)=\left(1+\frac{z}{m}\right)^{-m n} \sum_{k=0}^{\infty}\binom{m n+k-1}{k}\left(\frac{z}{m+z}\right)^{k} h\left(\frac{k}{n}\right) . \tag{1.5}
\end{equation*}
$$

The Baskakov operator is obtained when $\alpha=1$.
Becker [1] has discussed weighted global approximation for the Szász and Baskakov operators. In Section 2 we derive his direct result for (1.3) in the case $\alpha>0$ and also approximate functions having exponential growth on $[0, \infty]$. Section 3 contains results on the approximation of analytic functions.

## 2. Approximation on the Real Line

In this section $L_{n}$ denotes (1.3) with $\phi(y)=(1-\alpha y)^{-\alpha^{-i}}$ and $\alpha>0$.
Lemma 2.1. For $x \geqslant 0$ and $n=1,2, \ldots$,

$$
\begin{align*}
L_{n}(1 ; x) & =1 ;  \tag{2.1}\\
L_{n}(t ; x) & =x ;  \tag{2.2}\\
L_{n}\left((t-x)^{2} ; x\right) & =\frac{\alpha x^{2}+x}{n} . \tag{2.3}
\end{align*}
$$

Proof. The results follow easily from (1.1), (1.2), (1.3), and $\phi^{\prime}(y)=[\phi(y)]^{1+\alpha}$.

Lemma 2.2. For $x \geqslant 0, n=1,2, \ldots$, and $r=2,3, \ldots$,

$$
\begin{equation*}
L_{n}\left(t^{r} ; x\right)=\sum_{i=1}^{r} \sigma_{r}^{l} \frac{n(n+\alpha) \cdots(n+(l-1) \alpha)}{n^{r}} x^{l} \tag{2.4}
\end{equation*}
$$

where $\sigma_{r}^{l}$ are Stirling numbers of the second kind [2].
Proof. Let $y=f(x)=x(1+\alpha x)^{-1}, x \geqslant 0$, in (1.1). Using (1.2),

$$
\frac{y \phi_{n}^{\prime}(y)}{\phi_{n}(y)}=n \frac{y \phi^{\prime}(y)}{\phi(y)}=n x .
$$

Assume

$$
\frac{y^{\prime} \phi_{n}^{(l)}(y)}{\phi_{n}(y)}=n(n+\alpha) \cdots(n+(l-1) \alpha) x^{l}
$$

Using $\phi^{\prime}(y)=[\phi(y)]^{1+\alpha}$ we obtain

$$
\frac{y^{l+1} \phi_{n}^{(l+1)}(y)}{\phi_{n}(y)}=n(n+\alpha) \cdots(n+(l-1) \alpha)(n+l \alpha) x^{l+1}
$$

and hence, for $l=1,2, \ldots, x \geqslant 0, y=f(x)$,

$$
\frac{y^{l} \phi_{n}^{(l)}(y)}{\phi_{n}(y)}=n(n+\alpha) \cdots(n+(l-1) \alpha) x^{l}
$$

If $x \geqslant 0$ then $0 \leqslant y<1 / \alpha$ and

$$
\begin{aligned}
L_{n}\left(t^{r} ; x\right) & =\left[\phi_{n}(y)\right]^{-1} \sum_{k=0}^{\infty} a_{n k} y^{k}\left(\frac{k}{n}\right)^{r} \\
& =\left[\phi_{n}(y)\right]^{-1} \sum_{k=0}^{\infty} a_{n k} y^{k} \sum_{l=1}^{r} \sigma_{r}^{l} \frac{k(k-1) \cdots(k-l+1)}{n^{r}} \\
& =\sum_{l=1}^{r} \sigma_{r}^{l} \frac{y^{l} \phi_{n}^{(l)}(y)}{n^{r} \phi_{n}(y)} \\
& =\sum_{l=1}^{r} \sigma_{r}^{l} \frac{n(n+\alpha) \cdots(n+(l-1) \alpha)}{n^{r}} x^{l} .
\end{aligned}
$$

Lemma 2.2 shows that the numbers $a_{r, j}$ in Lemma 3 of [1] are Stirling numbers, since (2.4) is also valid for the Szász operator ( $\alpha=0$ and $f(x)=x$ ).

Define weights $w_{0}(x)=1, w_{N}(x)=\left(1+x^{N}\right)^{-1}, x \geqslant 0, N=1,2, \ldots$, and
space $C_{N}=\left\{h: h \in C[0, \infty)\right.$ and $w_{N} h$ is uniformly continuous and bounded on $[0, \infty)\}$. For $h \in C_{N}$ define [1]

$$
\begin{gathered}
\|h\|_{N}=\sup _{x \geqslant 0} w_{N}(x)|h(x)| \\
\Delta_{i}^{2} h(x)=h(x+2 \lambda)-2 h(x+\lambda)+h(x), \quad \hat{\lambda}>0,
\end{gathered}
$$

and

$$
\omega_{N}^{2}(h, \delta)=\sup _{0<i \leqslant \delta}\left\|\Delta_{\lambda}^{2} h\right\|_{N}
$$

In the sequel the finite constants $M_{N, \alpha}$ may have different values at each occurrence. The next result is an easy consequence of (2.4).

Lemma 2.3. For $N=0,1, \ldots, x \geqslant 0 n=1,2, \ldots$,

$$
\begin{equation*}
w_{N}(x) L_{n}\left(1+t^{N} ; x\right) \leqslant M_{N, x} . \tag{2.5}
\end{equation*}
$$

Lemma 2.4. For $N=0,1, \ldots, h \in C_{N}$, and $n=1,2, \ldots$,

$$
\begin{equation*}
\left\|L_{n}(h)\right\|_{N} \leqslant M_{N, \alpha}\|h\|_{N} \tag{2.6}
\end{equation*}
$$

Proof. If $x \geqslant 0$,

$$
w_{N}(x)\left|L_{n}(h ; x)\right| \leqslant w_{N}(x)\|h\|_{N} L_{n}\left(1+t^{N} ; x\right)
$$

and (2.6) follows from (2.5).
Lemma 2.5. For $N=0,1, \ldots, x \geqslant 0$, and $n=1,2, \ldots$,

$$
\begin{equation*}
w_{N}(x) L_{n}\left((t-x)^{2}\left(1+t^{N}\right) ; x\right) \leqslant M_{N, \alpha}\left(\frac{\alpha x^{2}+x}{n}\right) \tag{2.7}
\end{equation*}
$$

Proof. The result is trivial for $N=0$. For $N \geqslant 1$ and $x \geqslant 0$, using (2.4)

$$
\begin{aligned}
0 \leqslant & L_{n}\left((t-x)^{2} t^{N} ; x\right)=L_{n}\left(t^{N+2} ; x\right)-2 x L_{n}\left(t^{N+1} ; x\right)+x^{2} L_{n}\left(t^{N} ; x\right) \\
= & \frac{n \cdots(n+(N+1) \alpha)}{n^{N+2}} x^{N+2}+\sigma_{N+2}^{N+\frac{1}{2}} \frac{n \cdots(n+N \alpha)}{n^{N+2}} x^{N+1} \cdots \\
& +\frac{x}{n^{N+1}}-2\left[\frac{n \cdots(n+(N) \alpha)}{n^{N+1}} x^{N+2}\right. \\
& \left.+\sigma_{N+1}^{N} \frac{n \cdots(n+(N-1) \alpha)}{n^{N+1}} x^{N+1}+\cdots+\frac{x^{2}}{n^{N}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{n \cdots(n+(N-1) \alpha)}{n^{N}} x^{N+2} \\
& +\sigma_{N}^{N-1} \frac{n \cdots(n+(N-2) \alpha)}{n^{N}} x^{N+1}+\cdots+\frac{x^{3}}{n^{N-1}} \\
= & \left(1+\frac{\alpha}{n}\right)\left(1+\frac{2 \alpha}{n}\right) \cdots\left(1+\frac{(N-1) \alpha}{n}\right)\left[\left(1+\frac{N \alpha}{n}\right)\left(1+\frac{(N+1) \alpha}{n}\right)\right. \\
& \left.-2\left(1+\frac{N \alpha}{n}\right)+1\right] x^{N+2}+\cdots+\frac{x}{n^{N+1}}=\frac{\alpha x^{2}}{n} A_{N, n, \alpha}(x)+\frac{x}{n^{N+1}},
\end{aligned}
$$

where $A_{N, n, \alpha}(x)$ is a polynomial in $x$ of degree $N$ with coefficients that are bounded in $n$. Estimate (2.7) follows from (2.3) and the above.

We can now state the direct result. The proof is exactly the same as [1, Theorem 8], using (2.1), (2.2), (2.3), (2.6), and (2.7).

Theorem 2.6. For $N=0,1, \ldots, h \in C_{N}, x \geqslant 0$, and $n=1,2, \ldots$,

$$
\begin{equation*}
w_{N}(x)\left|L_{n}(h ; x)-h(x)\right| \leqslant M_{N, \alpha} \omega_{N}^{2}\left(h,\left(\frac{\theta(x)}{n}\right)^{1 / 2}\right) \tag{2.8}
\end{equation*}
$$

where $\theta(x)=\alpha x^{2}+x$.
Since Becker [1] has shown (2.8) for the Szász operator ( $\alpha=0$ ), the Szász operator provides the best weighted global approximation for the class of methods generated by the analytic function $\phi$ with $\phi(0)=1$ and $\phi^{\prime}(y)=[\phi(y)]^{1+\alpha}, \alpha \geqslant 0$. Also, (2.8) implies uniform convergence on $[0, a]$ for functions, $h$, having polynomial growth on $[0, \infty)$. Our next theorem yields uniform convergence for functions with exponential growth on the positive axis.

Theorem 2.7. If $h$ is continuous on $[0, a]$, continuous from the right at $a$, and, for some finite number $A,|h(x)| \leqslant e^{A x}, x \geqslant 0$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}(h ; x)=h(x) \tag{2.9}
\end{equation*}
$$

uniformly on $[0, a]$.
Proof. Choose $S>A / \ln (1 / \alpha a+1)$ and let $n \geqslant S, 0 \leqslant x \leqslant a$. Then

$$
0 \leqslant \frac{e^{A / n} x}{1+\alpha x}<\frac{1}{\alpha}
$$

and

$$
L_{n}\left(e^{A t} ; x\right)=\left[\frac{\phi\left(e^{A / n} x / 1+\alpha x\right)}{\phi(x / 1+\alpha x)}\right]^{n}=\left[1-\left(e^{A / n}-1\right) \alpha x\right]^{-n / \alpha}
$$

Using L'Hopital's rule,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}\left(e^{A t} ; x\right)=e^{A x} \tag{2.10}
\end{equation*}
$$

uniformly on $[0, a]$.
Let $0 \leqslant x \leqslant a, \varepsilon>0$, and choose $\delta>0$ such that $|h(t)-h(x)|<\varepsilon$ if $|t-x|<\delta, 0 \leqslant x \leqslant a$, and $0 \leqslant t<a+\delta$. Let

$$
c_{n k}(x)=\frac{a_{n k}(f(x))^{k}}{\phi_{n}(f(x))}
$$

where $f(x)=x(1+\alpha x)^{-1}$ and $n>2 A / \ln (1 / \alpha a+1)$. Then

$$
\begin{aligned}
& \left|L_{n}(h ; x)-h(x)\right| \leqslant \sum_{|k / n-x|<\delta} c_{n k}(x)\left|h\left(\frac{k}{n}\right)-h(x)\right| \\
& \quad+\sum_{|k / n-x| \geqslant \delta} c_{n k}(x)\left|h\left(\frac{k}{n}\right)-h(x)\right| \\
& \quad<\varepsilon+\frac{e^{A x}}{\delta^{2}} \sum_{k=0}^{\infty}\left(\frac{k}{n}-x\right)^{2} c_{n k}(x)+\frac{1}{\delta} \sum_{k=0}^{\infty}\left|\frac{k}{n}-x\right| c_{n k}(x) e^{A k / n} \\
& \leqslant \\
& \leqslant \varepsilon+\frac{e^{A x}}{\delta^{2}} L_{n}\left((t-x)^{2} ; x\right)+\frac{1}{\delta}\left[L_{n}\left((t-x)^{2} ; x\right) L_{n}\left(e^{2 A t} ; x\right)\right]^{1 / 2}
\end{aligned}
$$

and (2.9) follows from (2.3) and (2.10).
If $h \in C[0, \infty)$ and, for some finite $A$,

$$
\varlimsup_{x \rightarrow \infty} \frac{|h(x)|}{e^{A x}}<\infty
$$

the proof can easily be modified to yield (2.9). We cannot allow $h$ to grow any faster. For example, let $h(x)=e^{x^{1+\varepsilon}}, \varepsilon>0$. For $n \geqslant 1$ and $x>0$,

$$
\begin{aligned}
L_{n}(h ; x) & \geqslant(1+\alpha x)^{-n / \alpha} \sum_{k=1}^{\infty} \frac{n(n+\alpha) \cdots(n+(k-1) \alpha)}{k!}\left(\frac{x}{1+\alpha x}\right)^{k}\left(e^{k / n}\right)^{1+\varepsilon} \\
& \geqslant(1+\alpha x)^{-n / \alpha} \sum_{k=1}^{\infty}\left(\frac{n x}{1+\alpha x}\right) \frac{k\left(e^{k / n}\right)^{1+\varepsilon}}{k!}
\end{aligned}
$$

and the last series is divergent. Theorem 2.7 is well known for the Szasz operator (see [4]).

## 3. Approximation in the Complex Plane

Our final results deal with the approximation of analytic functions. In the first theorem, $L_{n}$ is the generalized Baskakov method of Section 2, while $L_{n}$ denotes the generalized Bernstein polynomial (1.4) in Lemma 3.2 and Theorem 3.3.

Theorem 3.1. If $\alpha>0, h$ is entire, and for some finite number $A$, $|h(x)| \leqslant e^{A x}, x \geqslant 0$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}(h ; z)=h(z) \tag{3.1}
\end{equation*}
$$

uniformly on compact subsets of $\operatorname{Re} z>-1 / 2 \alpha$.
Proof. Let

$$
h(z)=\sum_{v=0}^{\infty} \alpha_{v} z^{v}, \quad|z|<\infty .
$$

Without loss of generality, we may assume $\alpha_{v} \geqslant 0, v=0,1, \ldots$, since we can write $h=h_{1}-h_{2}+i\left(h_{3}-h_{4}\right)$ where the $h_{i}$ 's have nonnegative Taylor coefficients. Let $S$ be a compact subset of $\operatorname{Re} z>-1 / 2 \alpha$. Since $f(z)=z(1+\alpha z)^{-1}$ is analytic on $\operatorname{Re} z>-1 / 2 \alpha$ and maps that set into $|y|<1 / \alpha, f(S)$ is a compact subset of $|y|<1 / \alpha$. Thus there exists $\lambda$ such that $z \in S$ implies $|z /(1+\alpha z)| \leqslant 1 / \lambda<1 / \alpha$. Hence $L_{n}\left(t^{v} ; z\right)$ is analytic on $\operatorname{Re} z>-1 / 2 \alpha$ for $v=0,1,2, \ldots$. Let

$$
\Omega_{n}=\left\{z:\left|\frac{z e^{A / n}}{1+\alpha z}\right|<\frac{1}{\alpha}\right\}=\left\{z: z=x+i y \text { and }\left(x-c_{n}\right)^{2}+y^{2}<r_{n}^{2}\right\},
$$

where

$$
c_{n}=\frac{1}{\alpha\left(e^{2 A / n}-1\right)}, \quad r_{n}=\frac{e^{A / n}}{\alpha\left(e^{2 A / n}-1\right)} .
$$

Since $|h(x)| \leqslant e^{A x}$ for $x \geqslant 0$, an argument similar to the above shows $L_{n}(h ; z)$ is analytic on $\Omega_{n}$ for each $n=1,2, \ldots$. Next $\Omega_{n} \subset \Omega_{n+1} \subset \cdots \subset$ $\operatorname{Re} z>-1 / 2 \alpha$. Choose $N$ such that $\alpha / \lambda<1 / e^{A / N}<1$ and it follows that $S \subset \Omega_{n}$ for $n \geqslant N$. Theorem 2.7 gives

$$
\lim _{n \rightarrow \infty} L_{n}(h, x)=h(x), \quad 0 \leqslant x \leqslant c_{N}+r_{N}
$$

Since $L_{n}\left(t^{v} ; z\right)$ is analytic for $\operatorname{Re} z>-1 / 2 \alpha$, using (2.4) we see that (2.4) holds for $\operatorname{Re} z>-1 / 2 \alpha$. If $z \in \Omega_{N}$ then

$$
\sum_{v=0}^{\infty} \alpha_{v}\left|L_{n}\left(t^{v} ; z\right)\right| \leqslant \sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ;|z|\right) \leqslant L_{n}\left(h ; c_{N}+r_{N}\right)<\infty
$$

Hence

$$
\sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ; z\right)
$$

is analytic for $z \in \Omega_{N}, n=1,2, \ldots$. Since

$$
L_{n}(h ; x)=\sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ; x\right)
$$

for $0 \leqslant x \leqslant c_{N}+r_{N}$, we have

$$
L_{n}(h ; z)=\sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ; z\right)
$$

for $z \in \Omega_{N}$ and $n \geqslant N$. Finally, $\left\{L_{n}(h ;)\right\}, n \geqslant N$, is a uniformly bounded sequence on compact subsets of $\Omega_{N}$. By Vitali's convergence theorem

$$
\lim _{n \rightarrow \infty} L_{n}(h ; z)=h(z)
$$

uniformly on compact subsets of $\Omega_{N}$ and (3.1) follows.
Analogous to the remark following Theorem 2.7 , the proof of Theorem 3.1 can be modified to obtain conclusion (3.1) if $h$ is entire and there exists a finite number $A$ such that

$$
\overline{\lim }_{x \rightarrow \infty} \frac{|h(x)|}{e^{A x}}<\infty
$$

In particular, Theorem 3.1 is valid for entire functions of exponential type. For the Szász operator, uniform convergence is obtained on compact subsets of the finite plane [4].

In the sequel let $\phi(y)=(1+y / m)^{m}, f(z)=z(1-z / m)^{-1}, m=1,2, \ldots$, and

$$
c_{n k}(z)=\frac{a_{n k}(f(z))^{k}}{[\phi(f(z))]^{n}}
$$

Lemma 3.2. For $0<x<m, k=0,1, \ldots$, and $n=1,2, \ldots$,

$$
\begin{equation*}
\frac{1}{n}\left(x-\frac{x^{2}}{m}\right) c_{n k}^{\prime}(x)=\left(\frac{k}{n}-x\right) c_{n k}(x) \tag{3,2}
\end{equation*}
$$

Proof. Let $0<x<m$. Using $\phi^{\prime}(y)=[\phi(y)]^{1-1 / m}$,

$$
\begin{aligned}
c_{n k}^{\prime}(x) & =a_{n k}\left\{\frac{k(f(x))^{k-1} f^{\prime}(x)}{[\phi(f(x))]^{n}}-\frac{(f(x))^{k} f^{\prime}(x) n}{[\phi(f(x))]^{n+1 / m}}\right\} . \\
& =n f^{\prime}(x)[\phi(f(x))]^{-1 / m}\left\{\frac{k a_{n k}(f(x))^{k-1}}{n[\phi(f(x))]^{n-1 / m}}-\frac{a_{n k}(f(x))^{k}}{[\phi(f(x))]^{n}}\right\} .
\end{aligned}
$$

But

$$
x=\frac{f(x) \phi^{\prime}(f(x))}{\phi(f(x))}=f(x)[\phi(f(x))]^{-1 / m}
$$

and hence

$$
\begin{aligned}
1 & =\frac{f^{\prime}(x)[\phi(f(x))]^{-1 / m} f(x)}{f(x)}-\frac{f^{\prime}(x)\left\{f(x)[\phi(f(x))]^{-1 / m}\right\}^{2}}{m f(x)} \\
& =\frac{f^{\prime}(x)}{f(x)}\left(x-\frac{x^{2}}{m}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{n}\left(x-\frac{x^{2}}{m}\right) c_{n k}^{\prime}(x)= & \frac{k a_{n k}(f(x))^{k} f^{\prime}(x)}{n[\phi(f(x))]^{n} f(x)}\left(x-\frac{x^{2}}{m}\right) \\
& -\frac{a_{n k}(f(x))^{k} f^{\prime}(x)}{[\phi(f(x))]^{n}}\left(x-\frac{x^{2}}{m}\right)[\phi(f(x))]^{-1 / m} \\
= & \frac{a_{n k}(f(x))^{k}}{[\phi(f(x))]^{n}}\left(\frac{k}{n}-x\right) \\
= & c_{n k}(x)\left(\frac{k}{n}-x\right)
\end{aligned}
$$

Theorem 3.3. If $m$ is a positive integer,

$$
h(z)=\sum_{v=0}^{\infty} \alpha_{v} z^{v}, \quad|z| \leqslant m
$$

with

$$
\sum_{v=0}^{\infty}\left|\alpha_{v}\right| m^{v}<\infty
$$

and $L_{n}(h ; z)$ is the generalized Bernstein polynomial (1.4), then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}(h ; z)=h(z) \tag{3.3}
\end{equation*}
$$

uniformly on $|z| \leqslant m$.
Proof. As in the proof of Theorem 3.1 we may assume $\alpha_{v} \geqslant 0$, $v=0,1, \ldots$. From [3] we have

$$
\lim _{n \rightarrow \infty} L_{n}(h ; x)=h(x), \quad 0 \leqslant x \leqslant m
$$

The proof of Lemma 2.2 with $\alpha=-1 / m, \phi(y)=(1+y / m)^{m}$, and $y=f(x)=x(1-x / m)^{-1}$ shows that $(2.4)$ holds for $0 \leqslant x<m$. Therefore

$$
\begin{equation*}
L_{n}\left(t^{v} ; z\right)=\sum_{l=1}^{v} \sigma_{v}^{l} \frac{n(n-1 / m) \cdots(n-(l-1) / m)}{n^{v}} z^{l} \tag{3.4}
\end{equation*}
$$

for all complex $z$. When $r>m n$ the coefficients of $z^{l}$ vanish for $l>m n$. From (3.4) and

$$
L_{n}(h ; x)=\sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ; x\right), \quad 0 \leqslant x \leqslant m
$$

we see that

$$
\sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ; z\right)
$$

converges uniformly on $|z| \leqslant m$. Hence

$$
L_{n}(h ; z)=\sum_{v=0}^{\infty} \alpha_{v} L_{n}\left(t^{v} ; z\right), \quad|z|<m
$$

Just as in the proof of Theorem 3.1,

$$
\lim _{n \rightarrow \infty} L_{n}(h ; z)=h(z)
$$

uniformly on compact subsets of $|z|<m$. In particular, we have uniform convergence on each disk $|z| \leqslant p<m$. Using (3.4),

$$
\left|L_{n}^{\prime}(h ; z)\right| \leqslant L_{n}^{\prime}(h ; p) \leqslant L_{n}^{\prime}(h ; m)
$$

for $|z| \leqslant p<m$. By continuity

$$
\left|L_{n}^{\prime}(h ; z)\right| \leqslant L_{n}^{\prime}(h ; p)
$$

for $|z| \leqslant p \leqslant m$. Next, for any $|z| \leqslant m, p \leqslant|z| \leqslant m, z=t e^{i \eta}$, we have

$$
\begin{aligned}
\left|L_{n}(h ; z)-L_{n}\left(h ; p e^{i \eta}\right)\right| & \leqslant \int_{p}^{t}\left|L_{n}^{\prime}\left(h ; x e^{i \eta}\right)\right| d x \\
& \leqslant L_{n}(h ; t)-L_{n}(h ; p) \leqslant(t-p) L_{n}^{\prime}(h ; m)
\end{aligned}
$$

Therefore the functions $L_{n}(h ; z)$ will be equicontinuous in $|z| \leqslant m$ if the sequence $\left\{L_{n}^{\prime}(h ; m)\right\}$ is bounded. From (2.1), (2.2), which are true for (1.4), and (3.2)

$$
\begin{aligned}
0 \leqslant L_{n}^{\prime}(h ; x) & =\left(\frac{n}{x-x^{2} / m}\right) L_{n}((t-x) h(t) ; x) \\
& =\left(\frac{n}{x-x^{2} / m}\right) L_{n}\left((t-x)\left(h(x)+h^{\prime}(\zeta)(t-x)\right) ; x\right) \\
& =\left(\frac{n}{x-x^{2} / m}\right) L_{n}\left(h^{\prime}(\zeta)(t-x)^{2} ; x\right) \\
& \leqslant\left(\frac{n}{x-x^{2} / m}\right) L_{n}\left((t-x)^{2} ; x\right) h^{\prime}(m)=h^{\prime}(m)
\end{aligned}
$$

for $0<x<m$. By continuity,

$$
0 \leqslant L_{n}^{\prime}(h ; m) \leqslant h^{\prime}(m)
$$

Finally, since the $L_{n}(h ; z)$ converge uniformly to $h(z)$ on each disk $|z| \leqslant p<m$, and are equicontinuous on $|z| \leqslant m$, they converge uniformly on $|z| \leqslant m$ and (3.3) is proved.

## REFERENCES

1. M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J. 27, No. 1 (1978), 127-142.
2. C. Jordan, "Calculus of Finite Differences," Chelsea Press, NY, 1947.
3. S. Pethe, On linear positive operators, J. London Math. Soc. (2) 27, No. 2 (1983), 55-62.
4. B. Wood, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math. 17, No. 4 (1969), 790-801.
5. B. Wood, Order of approximation by linear combinations of positive linear operators, J. Approx. Theory 45 (1985), 375-382.
