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Uniform approximation of functions of a real or a complex variable by a class of
linear operators generated by certain power series is studied. © 1989 Academic Press,

Inc.

1. INTRODUCTION

Let (,6(y), (,6 - I be analytic for [ y I< r:( 00, with

00

(,6(y) = I akyk
k=O

and aD> 0, a1> 0; ak ~ 0, k = 2,3, .... There exist [3] bE (0,00], a domain
D containing the origin, and a unique function j such that j(O) = 0, j is
analytic on D,j(x) >0 for O<x<b, and

j(Z) (,6'(f(z))

(,6(f(z))

For n = 1, 2, .., and Iy[ < r, let

Z, ZED. (1.1 )

00

(,6n(Y) = [(,6(y)]n= I ankyk.
k~O

Define the linear operator

(1.2)

(1.3)

for those h, z for which the right-hand side of (1.3) exists. For example, if h
is bounded on the positive axis and [zl is sufficiently small, then (1.3) exists
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and is also a posItIve operator on some interval [0, a]. This method
specializes one introduced by Pethe [3 J, who obtained uniform
approximation of bounded functions. The author [5J studied the order of
approximation of bounded functions with linear combinations of the
special case of (1.3) defined below.

Assume 1jI(0) = 1 and 1jI'(y) = [1jI(y)] I +a with a= -11m, m= 1, 2, ..., or
a~ O. If a = -11m then ljI(y) = (1 + ylm )m,j(z) = z( 1 - zlm) -1, and (1.3) is
the generalized Bernstein polynomial

mn (mn)(z)k( z)mn-k Ik)
Ln(h;z)=k~O k m 1- m h(;;. (1.4 )

If a = 0 then ljI(y) = eY , j(z) = z, and (1.3) is just the Szasz operator. Ira> 0
then ljI(y)=(l_C(y)-~-l, j(z)=z(l+C(Z)-I, and (1.3) is a generalized
Baskakov method. For C( = 11m, m = 1, 2, ..., we have

Ln(h;Z)=(l+~)-mn I (mn+k-l)(~Yh(~). (1.5)
m k=O k m+z; n

The Baskakov operator is obtained when C( = 1.
Becker [1 J has discussed weighted global approximation for the Szasz

and Baskakov operators. In Section 2 we derive his direct result for (1.3) in
the case C( > 0 and also approximate functions having exponential growth
on [0, 00]. Section 3 contains results on the approximation of analytic
functions.

2. ApPROXIMATION ON THE REAL LINE

In this section L n denotes (1.3) with ljI(y) = (1- ay)-a-
i

and C( >0.

LEMMA 2.1. For x ~ 0 and n = 1, 2, ...,

L n(1;x)=l;

Ln(t; x) = x;

2 ax2 +x
Ln((t -x) ; x) = .

n

(2.1 )

(2.2 )

(2.3 )

Proof The results follow easily from (1.1), (1.2), (1.3), and
1jI'(y) = [1jI(y)JIH.
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LEMMA 2.2. For x;?; 0, n = 1, 2, ..., and r = 2, 3, ...,

L (
r. )_ ~ I n(n+0::) ... (n+U- 1)0::) 1

nt,x-L.,(Jr r x,
1=1 n

where (J~ are Stirling numbers of the second kind [2].

Proof LetY=f(x)=x(l+o::x)-J, x;?; 0, in (1.1). Using (1.2),

y(j?~(y) y(j?'(y)
(j?n(Y) = n (j?(y) = nx.

Assume

Using (j?'(y) = [(j?(y)J1+rx we obtain

and hence, for 1= 1, 2, ..., x;?; 0, y = f(x),

yl(j?{l)(y)
(j?:(y) =n(n+o::)···(n+(l-I)o::)xl.

If x;?; 0 then 0 ~ y < 1/0:: and

(2.4)

Lemma 2.2 shows that the numbers a"j in Lemma 3 of [1] are Stirling
numbers, since (2.4) is also valid for the Szasz operator (0:: = 0 and
f(x)=x).

Define weights wo(x) = 1, wN(x) = (1 + xN)-J, x;?; 0, N = 1, 2, ..., and
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space CN= {h: hE CEO, 00 ) and WNh is uniformly continuous and bounded
on [0, oo)}. For hECN define [1]

IlhllN=sup wN(x) Ih(x)l,
x~o

Ll~ h(x) = h(x + 2).) - 2h(x +).) + h(x), Ie> 0,

and

OJ~(h,(j)= sup IILl~hIIN'
0<;."; b

In the sequel the finite constants M N, ~ may have different values at each
occurrence. The next result is an easy consequence of (2.4).

LEMMA 2.3. For N = 0, 1, ..., x?°n = 1, 2, ...,

WN(x) L n(1 + tN; x) ~ M N,~'

LEMMA 2.4. For N = 0, 1, ..., hE CN' and n = 1, 2, ... ,

Proof If x? 0,

WN(x) ILn(h; x)1 ~ wN(x)llhIl NL n(l + tN; x)

and (2.6) follows from (2.5).

LEMMA 2.5. For N = 0, 1, ..., x? 0, and n = 1, 2, ...,

(2.5)

(2.6)

(2.7)

Proof The result is trivial for N=O. For N? 1 and x?O, using (2.4)

o~ Ln((t- x?tN; x) = L n(tN+2; x) - 2xLn(tN+ 1; x) + x 2Ln(tN; x)

_n .. ·(n+(N+1)a) N+2 N+1 n ... (n+Na) N+1
- N+2 X +6N+2 N+2 x···n n

x 2[n ... (n+(N)a) N+2
+ N+1- N+1 Xn n

n .. ·(n+(N-1)a) x 2J
+ N XN+1...).. +6N+1 N+1 ,'" Nn n
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n ... (n + (N -1) a)+ X N + 2

nN

N_ln ... (n+(N-2)a) N+l x 3

+0" x + ... +--N nN nN-1

(
Na) J N+2 X ax

2
x-2 1 +--;:;- + 1 x + ... + nN+1=--;;-AN,n,,,,(X) + nN+1'

where AN, n, ",(x) is a polynomial in x of degree N with coefficients that are
bounded in n. Estimate (2.7) follows from (2.3) and the above.

We can now state the direct result. The proof is exactly the same as
[1, Theorem 8], using (2.1), (2.2), (2.3), (2.6), and (2.7).

THEOREM 2.6. For N = 0, 1, ..., h E eN' x:;:: 0, and n = 1, 2, ...,

(2.8)

where 8(x) = ax2+ x.

Since Becker [1] has shown (2.8) for the Szasz operator (a = 0), the
Szasz operator provides the best weighted global approximation for the
class of methods generated by the analytic function ~ with ~(o) = 1 and
~'(y) = [~(y)] 1 +0<, a:;:: 0. Also, (2.8) implies uniform convergence on [0, a]
for functions, h, having polynomial growth on [0, (0). Our next theorem
yields uniform convergence for functions with exponential growth on the
positive axis.

THEOREM 2.7. If h is continuous on [0, a], continuous from the right at
a, and, for some finite number A, Ih(x)1 ~ eAx, x:;:: 0, then

lim Ln(h; x) = h(x)
n --> 00

uniformly on [0, a].

Proof Choose S> Ajln( l/aa + 1) and let n:;:: S, 0 ~ x ~ a. Then

eA/nx 1
O~--<

l+ax a

(2.9)
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and

L (eAt. x) = [¢J(e
Aln

x/I + ax)]n = [1- (e Aln -1) ax] -n/~
n, ¢J(x/l + ax) "

Using L'Hopital's rule,

lim Ln(eAt; x) = eAx
n -> 00

53

(2.10)

uniformly on [0, a].
Let 0:( x:( a, t: > 0, and choose <5 > 0 such that Ih(t) - h(x)1 < t: if

It-xl <<5, O:(x:(a, andO:(t<a+<5. Let

( )
_ank(f(X))k

Cnk X - ¢J,,(f(x)) ,

where f(x) = x( 1 + <xx) -1 and n > 2Ajln( 1/<Xa + 1). Then

fL,,(h;x)-h(x)f:( I C"k(X)lh(~)-h(x)1
Ikl,,-xl < 6

+ I C"k(X)lh(~)-h(X)1
Ikln -xl", 6

e
Ax

00 (k)2 1 00 Ik I
<t:+y k~O ;;-x C"k(X) +;5 k~O ;;-x c"k(x)e

Akln

eAx 1
:( t: + Y L,,((t - X)2; x) +;5 [L,,((t - xf; x) L,,(e2At; x)r/2

and (2.9) follows from (2.3) and (2.10),
If h E C[O, CXJ) and, for some finite A,

-I' Ih(x)1
1m --::rx- < CXJ,

x ----+ co e

the proof can easily be modified to yield (2.9). We cannot allow h to grow
any faster. For example, let h(x) = exl

+'-, t: > O. For n ~ 1 and x> 0,

L,,(h; x) ~ (1 + <xx) ~"/~ f n(n + <x) ... (n,+ (k - 1) <x) (_X_)\ekl")1 +£

k~1 k. 1+ <Xx

00 ( nx ) k(ekl") 1
+e

~ (1 + <xx)~"/~ I --
k~1 l+<Xx k!

and the last series is divergent. Theorem 2.7 is well known for the Szasz
operator (see [4]).
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3. ApPROXIMATION IN THE COMPLEX PLANE

Our final results deal with the approximation of analytic functions. In
the first theorem, Ln is the generalized Baskakov method of Section 2,
while L n denotes the generalized Bernstein polynomial (1.4) in Lemma 3.2
and Theorem 3.3.

THEOREM 3.1. If a> 0, h is entire, and for some finite number A,
Ih(x)1 < eAX, x ~ 0, then

lim Ln(h; z) = h(z)
n -> 00

uniformly on compact subsets of Re z> -1/2a.

Proof Let

(3.1 )

00

h(z) = L avzV
,

v=o
Izi < 00.

Without loss of generality, we may assume av ~ 0, v = 0, 1, ..., since we
can write h = hI - h2 + i(h 3 - h4 ) where the h/s have nonnegative Taylor
coefficients. Let 8 be a compact subset of Re z> -1/2a. Since
f(z) = z( 1+ az) -1 is analytic on Re z> - l/2a and maps that set into
Iyl < l/a, f(8) is a compact subset of Iyl < l/a. Thus there exists A such
that ZE 8 implies IzI(l +az)1 < 1/,1, < l/a. Hence Ln(tv; z) is analytic on
Re z > - l/2a for v = 0, 1, 2, .... Let

where

1

Since Ih(x)1 <eAx for x~O, an argument similar to the above shows
Ln(h;z) is analytic on Q" for each n=1,2, .... Next QncQ"+lc ... c

Re z > -1/2a. Choose N such that alA < lleA/N < 1 and it follows that
8 c Q n for n ~ N. Theorem 2.7 gives

lim L,,(h, x) = h(x),
,,-> 00
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Since Ln(tv; z) is analytic for Re z> -1/2a, using (2.4) we see that (2.4)
holds for Re z> -1/2a. If z E Q N then

00 00

L avILn(tv;z)!:;:;; L avLn(tv;lzl):;:;;Ln(h;cN+rN)<oo.
v=o v=o

Hence
00

L avLn(tv; z)
v~O

is analytic for z E Q N, n = 1, 2, .... Since

00

Ln(h; x) = L avLn(tv; x)
v~o

00

Ln(h; z) = L avLn(tv; z)
v=o

for z E Q Nand n?; N. Finally, {Ln(h; )}, n?; N, is a uniformly bounded
sequence on compact subsets of Q N' By Vitali's convergence theorem

lim Ln(h;z)=h(z)
n~ 00

uniformly on compact subsets of Q Nand (3.1) follows.
Analogous to the remark following Theorem 2.7, the proof of Theorem

3.1 can be modified to obtain conclusion (3.1) if h is entire and there exists
a finite number A such that

-1' Ih(x)1
1m ~<OO.

x~oc:: e

In particular, Theorem 3.1 is valid for entire functions of exponential type.
For the Szasz operator, uniform convergence is obtained on compact
subsets of the finite plane [4].

In the sequel let ~(y) = (1 + ylm )m,j(z) = z( 1 - zlm) -1, m = 1, 2, ..., and

ank(f(z)l
Cnk(Z) = [~(f(z))r

LEMMA 3.2. For 0 < x < m, k = 0, 1, ..., and n = 1, 2, ... ,

(3.2)
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Proof Let 0 < x < m. Using q>'(y) = [q>(y)] I-11m,

, {k(f(X))k-1 f'(x) (f(x))"f'(x) n }
Cnk(x) = ank [q>(f(x))]n - [q>(f(x))]n+ 11m

_ if' [,I.(f )] -11m { kank(f(x))k - I ank(f(x) )k }
- n (x) 'I' (x) n[q>(f(x))]n-I/m - [q>(f(x))r .

But

and hence

1=f'(x)[q>(f(x ))] -11m f(x)

f(x)

=f'(x) ( _ x
2
.)

f(x) X m .

Therefore

f'(x ){f(x)[q>(f(x ))] -11m }2
mf(x)

THEOREM 3.3. If m is a positive integer,

00

h(z) = L avzv,
v~o

with

Izl:::;;.m,
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and L n ( h; z) is the generalized Bernstein polynomial (1.4), then

lim Ln(h;z)=h(z)
n~ 00

uniformly on Izi ~ m.

57

(3.3 )

Proof As in the proof of Theorem 3.1 we may assume (Xv;::: 0,
V = 0,1, .... From [3] we have

lim Ln(h; x) = h(x), O~x~m.

The proof of Lemma 2.2 with (X= -11m, qS(y)=(1+ylm)m, and
y = f(x) = x( 1 - xlm) -1 shows that (2.4) holds for 0 ~ x < m. Therefore

Ln(tv; z) = ±(J~ n(n -11m)··· Sn - (l-l)jm) Zl (3.4)
1~1 n

for all complex z. When r> mn the coefficients of Zl vanish for I> mn. From
(3.4) and

00

Ln(h; x) = L cxvLn(tv; x),
V~O

we see that
00

L cxvLn(tv; z)
V~O

converges uniformly on \z\ ~ m. Hence

00

Ln(h; z) = L cxvLn(tv; z),
v=o

Just as in the proof of Theorem 3.1,

lim Ln(h;z)=h(z)
n ~ 00

O~)(~m,

Izi <m.

uniformly on compact subsets of Izi < m. In particular, we have uniform
convergence on each disk Izi ~p<m. Using (3.4),

IL~(h;z)1 ~L~(h;p)~L~(h;m)

for Izi ~p < m. By continuity
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for Izi ~p ~ m. Next, for any Izi ~ m, p ~ Izi ~ m, z= tei~, we have

ILn(h; z) -Ln(h;pei~)1 ~rIL~(h; xei~)1 dx
p

~ Ln(h; t) - Ln(h;p) ~ (t-p) L~(h; m).

Therefore the functions Ln(h; z) will be equicontinuous in Izi ~ m if the
sequence {L~(h; m)} is bounded. From (2.1), (2.2), which are true for (1.4),
and (3.2)

o~ L~(h; x) = ( n 2/ ) Ln((t - x) h(t); x)
x-x m

=( n 2/ )Ln((t-X)(h(X)+h'(O(t-X));X)
x-x m

=( n 2/ )Ln(h'(O(t-X)2;X)
x-x m

~( n 2/ ) Ln((t-xf;x)h'(m)=h'(m)
x-x m

for 0 < x < m. By continuity,

o~ L~(h; m) ~ h'(m).

Finally, since the Ln(h; z) converge uniformly to h(z) on each disk
Izi ~p < m, and are equicontinuous on Izi ~ m, they converge uniformly on
Izi ~ m and (3.3) is proved.
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